
Chapter 14 Customer Written Tests – automating the
acceptance process

(To appear as part of "Extreme Software Engineering – A Hands-On Approach" by
Daniel H Steinberg and Daniel W Palmer published by Prentice-Hall Copyright 2004)
Your goal is to produce software that does what the customer has asked for. There are
many factors that make this difficult. There can be a gap between what the customer
thinks is clearly being expressed and your understand their needs. Often, in the process of
writing the software, you discover issues that have not been made explicit. As the
software evolves the customer thinks of new requirements or wants to make adjustments
to existing requirements.

Let's assume that if you could figure out what a customer wants then you could write the
code to make it work. How can you be sure you understand what a customer wants? Your
client and you try to capture your common understanding in a sequence of activities
called acceptance tests. The customer should write these tests. That doesn't mean that the
client will be writing code. In the framework we'll explore in this chapter, the customer
designs HTML tables and you provide a little bit of code to glue the tables to the parts of
your application that the tables will be exercising.

Acceptance tests help the customer discover and the developers understand what is
expected of a particular User story. In XP, we look at User stories as describing a
conversation. They are not hard and fast requirement documents. Acceptance tests are a
way of asking the customer how they will determine that you have satisfied the goals of
the User story. As with all facets of XP, a customer can add acceptance tests to a story if
it the costs of doing so are justified.

Acceptance tests are more useful if they can be automated. You want to be able to run the
tests all the time. Acceptance tests point you in the direction of tasks that the User stories
can be split into. You don't need to write your acceptance tests before you write your
production code in the same way that you write unit tests first. Acceptance tests will,
however, focus your efforts on what the customer requirements.

In this chapter we'll work through a couple of examples of acceptance tests using the Fit
framework. At the time of this writing, Fit is still in beta and additions to the framework
and to the documentation should be expected. Even though it is early on in the life of this
framework, there are compelling reasons for considering it. Fit allows provides a format
for acceptance tests with two chief advantages. First, customers are comfortable enough
with spreadsheets and tables that they can write their own acceptance tests. Second, the
approach is formal enough that developers can write the fixtures that tie the tests to the
code being tested. In other words, with relatively little work on the part of customers or
developers, acceptance tests can be written and run automatically so that both the
customers and the developers can track the progress towards completing User stories.

The Fit Framework
There are four pieces to writing and automatically running acceptance tests.

• First, the customer has to write the acceptance tests. In the case of the Fit
framework, the customer will be creating tables on a web page using either
HTML or a Wiki.

• Second, the developers will write the code that makes the acceptance tests pass.
This is the shipping code that the developers will release to the customers every
couple of weeks.

• Third, the developers will need to write a little bit of code that maps from the tests
the customers write to the application being tested. These fixtures will extend
classes in the Fit framework and will exercise the shipping code according to the
customer specifications.

• Finally, there needs to be a framework that parses the HTML or Wiki tables and
makes the appropriate calls in the test fixtures created in the third step. These are
provided by the Fit framework and can be run from the command line or remotely
using scripts written in Perl, Python, Ruby, or other languages.

Writing acceptance tests as HTML tables
There are several types of tests that can be run from the Fit framework. We'll take a
quick look at three of them. Other types of tests are being developed for the Fit
framework, but you can design a wide array of tests using a combination of the three
basic types described in this section. In all cases the intent is that the tables express what
the customer is interested in verifying in a form that is friendly to both customers and
developers.

First, imagine that you've designed a new calculator program that you'd like to test. One
test might be something like checking that 36 + 12 = 48. Suppose that you aren't really
interesting in testing addition. This first test is designed to test the results of buttons being
pushed and information being entered into text fields in a GUI.

enter 36
press plusButton
enter 12
press equalsButton
check result 48

A second test may be used when you need to quickly set some values and check the
results of performing various actions. For example, we could set our first input to 36, our
second input to 12 and then check what we get back for the sum, difference, product, and
difference. We could then repeat the test when the values are 30 and 5. Here's what that
test could look like in a table form.

firstNumber secondNumber sum() difference() product() quotient()

36 12 48 24 432 3
30 5 35 25 150 6

Again, the test is easy to read. In this case the first two columns will be treated as input.
The final four columns will call methods with the names that are specified in the first
row of the table and the results will be compared with the values specified in the test data
row.

A third type of test is used when you want to look at the characteristics of an object.
Perhaps you have an object that has been returned by a search and you want to check its
state. As a simple example, suppose you have booked a flight from Cleveland to Seattle
and have been given the flight locator id 123ABC. Then a table might look like this.

airline id departureCity destinationCity flightNumber departureDate
BigAir 123ABC Cleveland Seattle 429 11/27/02

Of course your record contains more information. We didn't ask for all of the information
available in this one table. We could also create a second table that queries some of the
other information like this.

airline id departureTime arrivalTime mealServed movie numberOfStops
BigAir 123ABC 11:30 EST 13:00 PST lunch none none

You can see from these tests that the name of the airline and the id should identify the
record and that the rest of the information can be compared with the data stored in the
object.

Supporting the HTML tables with fixtures
The next step is to process these tests so that the results can be reported back. To a
computer there is no apparent difference between the tables for one type of test and those
for another. In Fit, the code that is responsible for interpreting one or more tables is
called a fixture. To map a table to a given fixture you'll list the Java class used to process
the table in the first row of the table. For example, a subclass of ColumnFixture is
required to process the calculator example that adds, subtracts, multiplies, and divides.
Suppose that this class is called CalculateThis and that it is part of the answers
package. Then your table would look like this.

answers.CalculateThis
firstNumber secondNumber sum() difference() product() quotient()
36 12 48 24 432 3

The CalculateThis class will need to have public variables firstNumber and
secondNumber. In our example, we can declare these variables to be ints.
CalculateThis will also need public methods named sum(), difference(),

product(), and quotient() . They don't take any arguments and they return ints
that can be compared with the values in the table.

The first calculator example will use the ActionFixture class that comes with the
framework. The ActionFixture class uses the keywords start, press, enter, and
check. The start keyword points to the class that understands the method names that are
in the second column after the words press, enter, and check. Let's assume that the class
in our example is CalculateGUI in the answers package. We actually have to give
names to the methods accepting entered input. Now the table looks like this.

fit.ActionFixture
start answers.CalculateGUI
enter number 36
press plusButton
enter number 12
press equalsButton
check result 48

The CalculateGUI class then would need no argument methods named
plusButton and equalsButton. It would also need a method named number that
accepts, in this case, an int. Finally, the result method needs to return an int.

Together the tables and the corresponding classes combine to define the acceptance tests.
The fixtures should contain little more than the calls into the production code. The next
step is to write the functionality into your application.

Writing the code to pass the tests

Remember that the focus of your efforts is still to deliver working code that meets the
customer's requirements. The Fit framework is designed to make it easy to write the
acceptance tests that call into your code in the same way that JUnit is a framework that
allows you to easily write unit tests. Once you get accustomed to the Fit framework, it
won't take you long to extend a column or row fixture or to write the code that you need
to get an action fixture working.

Acceptance tests should not change the way you write the actual code. Acceptance tests
will help you partition the user stories into tasks. Pairs of developers can work on these
tasks by writing unit tests and then the code that makes the unit tests pass. Often the
acceptance tests can help suggest unit tests that you might write, The fixtures should not
determine the interface of the code being tested in the same way that unit tests do. When
it is time to deploy your code, you will strip out the acceptance test HTML, Java source,
and Java class files.

Running acceptance tests with fit
You need to process your acceptance tests by passing them as input into an application.
The runner we'll use in this chapter is FileRunner. You'll run it from the command
line by making sure that fit.FileRunner and the classes in your fixture are in the
classpath. You'll also need to pass in the path to the input and output files. We'll look at
the actual syntax in depth later in this chapter.

You'll get an indication of the results of processing the tests in the terminal window.
Exceptions often indicate that a variable, method, or class required by the table isn't
provided or accessible. The problem also might be with the type returned by the
method.You should check that your classpath has been set correctly and make sure that
you have compiled your fixture. When bouncing back between Java code and HTML it's
easy to forget that HTML needs only be saved while Java code needs to be saved and
compiled.

The results of running the acceptance tests should be easy to read. The resulting HTML
file is color coded to highlight areas that you need to address. Yellow areas are intended
for developers. This is where you'll see warnings that certain parts of the acceptance tests
haven't been implemented in the fixtures. Red highlighting indicates that the tests ran
without exception but that the results weren't what was expected. Not only will the cell
be highlighted in red, but you will see a report that tells you what the actual result was
and what the expected result was. Green highlighting is reserved for tests that ran without
any problems and returned the expected result.

Exploring Fit

You'll find the Fit wiki at http://fit.c2.com. A wiki is a special web site where every page
is editable by anybody. This means that as the community gains more experience with
Fit, more examples and helpful observations are added to the site. Page around and
explore the different styles of acceptance tests that you can write using Fit. On the
Download Now page, early downloads support Java, .Net, and Python with plans to
support Lisp, Ruby, Perl and C++.

For this chapter you'll need the Java version of the framework. Download and expand it.
You don't need any more than the fit.jar file to run the framework, but you'll find the
supporting documentation helpful. Source files are included for the framework in the fit
package and for several of the examples that you'll find on the site in the eg package.
Under the Documents directory you'll find some of the pages that can also be found on
the site. Because the online site is a wiki, the pages you download are a snapshot of the
site at a given time. The Reports directory contains some of the acceptance test pages
from the wiki. These can be processed locally from the command line. On the wiki, the
tests can be processed by clicking a hyperlink to a cgi script.

While online, follow the Cooks tour for developers. Get a quick view of the Row,
Column, and Action fixtures. Take a moment to look at the Field Guide To Fixtures to

figure out which fixtures are best suited to different tasks that you are trying to
accomplish. You'll notice that the advice for Making Fixtures is similar to the advice for
using JUnit to write test first code. The ideas in Fit and JUnit are different but related.
With JUnit you write the test first and then write the code that makes the test code
compile and then pass. With Fit your customer writes the test. You write the fixture that
makes the test not throw any exceptions. Then you write the code that gets the tests to
pass. The differences in intent and practice will become more evident as you play with
the two testing frameworks.

From User stories to Acceptance Tests

Because we haven't had a way of automating acceptance tests, until now much of our
experience has been with customers playing with the application and saying, "that looks
right." Sometimes the customer is able to formalize the steps we need to take to test the
code. Even in these cases, because the tests needed to be run manually, they weren't run
frequently.

Fit allows us to automate the processing of our acceptance tests. This means that the
developers can run the tests while working on a user story to help measure progress. A
customer can also either run the tests or view the results of the most recently generated
tests. You'll run the tests by passing arguments to the Java class fit.FileRunner to
specify the input HTML file and the corresponding location and name of the output file.

Test results can be easily published. Since you are generating HTML files, these can be
shared with the customer by putting them on a web site or attaching the or including them
in an email. You can also customize a cgi script or create a JSP page or servlet to allow
the developers or the customers to run the acceptance tests remotely by clicking a link on
a web page. As the community explores Fit, more of this will be available to you in an
easily downloadable form.

Our first example User Story

Let's begin with a user story that tests that the value returned in a transaction is correct.
Our customer is Brian, the IT manager of a fictional Grocery chain called Cheaper Buy
the Dozen. Brian has explained that each item in the story has a unit amount. Any time a
customer buys twelve of any item, they get a 5% "case" discount on that set of twelve
items.

Brian captures this as the following user story.

CASE DISCOUNT
THE PRICE FOR MULTIPLE COPIES OF THE SAME ITEM IS THE NUMBER OF
ITEMS MULTIPLIED BY THE UNIT COST WITH A 5% DISCOUNT ON ANY SET OF
TWELVE PURCHASED.

Initial acceptance tests for the Case Discount story

We think we know what Brian means but we ask him to come up with acceptance tests
that will tell him that we've done what he wants. He thinks a moment, and says, "Let's say
that a pound of coffee costs $8.00. If I buy one pound then the item total should be $8.00.
If I buy five pounds then the item total should be $40.00. If I buy twelve pounds then we
need to figure out the discount. Multiplying $8.00 times twelve gives us $96.00. Now 5%
of $96 is $4.80. This means that the price for a dozen pounds of coffee is $96 minus the
$4.80 or $91.20."

"O.K.," you suggest, "why don't we summarize your requirements in this table."

Unit Price Number
of Items

Item Total

$8.00 1 $8.00
$8.00 5 $40.00
$8.00 12 $91.20

"That's nice," says Brian. "Now that I see it like this, I think there's a couple of cases I'd
like to add."

"Like what?" you ask.

"Well, if I buy more than one dozen but less than two dozen, I want to make sure I only
get a discount on the first dozen. So if I buy seventeen pounds of coffee I should get
$131.20 – the price with a discount for the first dozen plus the price for the next five
pounds."

"What else," you prompt.

"Well, I want to make sure that I get discounts correctly calculated if I buy two dozen or
more. So let's' check that the price for two dozen pounds is twice $91.20, or $182.40 and
that the price for twenty-nine pounds is $40 more than that or $222.40. While we're at it,
lets check that the price for one hundred dozen pounds is $9120.00. It's kind of ridiculous
– we'd never sell this quantity out of our stores but it will make me feel better that we're
getting the calculation correct."

"Great," you agree, "this will check our logic on the dozen discounts pretty thoroughly."

"There's one more case I'd like to check," says Brian.

"What's that?" you ask.

Brian answers, "I'd like to see what happens if 5% of the unit price is a fraction of a cent.
Let's say I sell candy corns at five cents a piece. A dozen of them would be $0.60 minus
the 5% discount of $ 0.03. Oh, I guess that's o.k."

"No," you chime in, "I see where you're going. If you sell them for four cents a piece,
then a dozen of them would be $0.48 minus the 5% discount of $0.024. Now you'd end
up pricing them at $0.456 per dozen."

"Right," answers Brian, "I'd really like them to be priced at $0.46 per dozen. It sounds
small but these differences add up."

"So," you summarize, "if all of your prices end in a five or a zero this will never happen,
but if they end in other digits then we'll have to deal with these fractions of a penny."

Brian thinks another moment and answers, "I want to leave flexibility in pricing, so let's
add your case in as a test case. Whenever we get a fraction of a penny, I'd like to round
up."

"O.k., " you agree, "would you mind if we give prices in terms of pennies in our tests?"

"No, that's fine, "says Brian. You present him with the following updated table.

Unit price
in pennies

Number
of Items

Total price
in pennies

8 00 1 8 00
8 00 5 40 00
8 00 12 91 20
8 00 17 131 20
8 00 24 182 40
8 00 29 222 40
8 00 1200 9 120 00

4 12 46

Benefits of having acceptance tests
Compare your current understanding of what Brian wants with what you understood
when you first saw this User Story.

CASE DISCOUNT
THE PRICE FOR MULTIPLE COPIES OF THE SAME ITEM IS THE NUMBER OF
ITEMS MULTIPLIED BY THE UNIT COST WITH A 5% DISCOUNT ON ANY SET OF
TWELVE PURCHASED.

Armed with his tests you know have a much better idea of how the case discount should
apply in his stores. More than that, you now have an agreement with Brian that when you
have passed all of these tests, he will consider this story completed. As will all other

aspects of XP, Brian can change the requirements or add to the tests, but he will take the
costs into consideration before doing so.

The table also helps Brian understand what he needs to see in order to consider this User
Story complete. If he can quickly look at this table and see which of these cases are
passing and failing, he'll have a good indication of the status of this user story. With Unit
tests we used JUnit to run our tests and indicate which tests failed and why. As smart as
Brian is, he's not a developer. We should be able to present the results to him in a
customer friendly way. The strategy of the Fit framework is simple. If a result is correct,
it is colored green. If it is incorrect it is colored red and the returned and the expected
values are displayed for the customer to inspect. If the fixture isn't yet in place to support
the acceptance tests then the cell will be colored yellow with a message designed for
developers not customers. We'll soon see examples of all three of these.

Formalizing the Acceptance Tests
The Fit framework is designed to take tables like the one we created in the last section as
input. There are several types of fixtures used to process tables differently. We'll begin
with the column fixture. We'll tweak the table we created so that we can process it using
the fit framework. We'll then begin to process the table and create the fixture needed to
respond to these inputs.

Mapping to the Fixture

The main advantage of the table we set up with Brian is that it clearly communicates to
him and to us what his requirements are. In the table the first column is an integer that
represents the price of a single unit and the second column is an integer that represents
the number of units purchased. You can view the contents of these columns as inputs into
some method responsible for determining the total cost for that item. The third column is
a bit different. It contains the expected value of the total cost for the item. You can think
of it as the expected return value for the method.

For the column fixture, these are the two types of columns. Either a column corresponds
to a variable in the corresponding Java class or it corresponds to a method. The values of
the variables are read from the table. The values in the method column are read from the
table and compared with the value of the corresponding methods. We indicate methods
by ending their names with parentheses.

In our example, let's create an HTML file called CaseDiscountFitTest.html. Let the
corresponding Java class be called CaseDiscountFicture.java and place it in a package
called register. It is possible that several tables use the same fixture or that a single
HTML file contains more than one table that use different fixtures. Each table needs to
contain identification of the fixture that is intended to process it. The top line of a table is
the name of the fixture used to process it. To make it look nicer, we use the colspan

attribute to force the top row to span all of the columns. Our current example looks like
this.

Notice that the first line of the table includes the qualified name of the Java class,
register.CaseDiscountFixture. The first two columns are labeled
unitPrice and numberPurchased and therefore correspond to public variables in
the CaseDiscountFixture class. The third column is labeled itemTotal() and
corresponds to a public method in the CaseDiscountFixture class.

The client is expected to be able to produce these tables. They can use a spreadsheet
program or word processor to produce the tables and export the HTML. They can write
the actual HTML itself. Even the most non-technical clients can easily follow the
template to create their own tables. In our case, Brian quickly created the following
HTML that generated the page you just saw.

<html>
 <head>

 <title> Acceptance Tests User Story: Case Discount </title>
 </head>
 <body>
 <h1> Acceptance Tests for User Story: Case Discount </h1>
 <p> The price for multiple copies of the same item is the
 number of items multiplied by the unit cost with a 5%
 discount on any set of twelve purchased.
 </p>
 <table BORDER>
 <tr>
 <td colspan = 3> register.CaseDiscountFixture </td>
 </tr>
 <tr>
 <td> unitPrice </td>
 <td> numberPurchased </td>
 <td> itemTotal() </td>
 </tr>
 <tr>
 <td> 800 </td>
 <td> 1 </td>
 <td> 800 </td>
 </tr>
 <tr>
 <td> 800 </td>
 <td> 5 </td>
 <td> 4000 </td>
 </tr>
 <tr>
 <td> 800 </td>
 <td> 12 </td>
 <td> 9120 </td>
 </tr>
 <tr>
 <td> 800 </td>
 <td> 17 </td>
 <td> 13120 </td>
 </tr>
 <tr>
 <td> 800 </td>
 <td> 24 </td>
 <td> 18240 </td>
 </tr>
 <tr>
 <td> 800 </td>
 <td> 29 </td>
 <td> 22240 </td>
 </tr>
 <tr>
 <td> 800 </td>
 <td> 1200 </td>
 <td> 912000 </td>
 </tr>

 <tr>
 <td> 4 </td>
 <td> 12 </td>
 <td> 46 </td>
 </tr>
 </table>
 </body>
<html>

Running the tests
We will process the HTML file by running the FileRunner class in the fit package.
We can do this from the command line or from within an IDE. When you first
downloaded the Fit framework, you should have run the set up tests specified on the
RunMeFirst page of the Wiki. To run FileRunner you had to specify the classpath and
an input file and an output file. Let's look at each of those parts in turn.

We'll begin by creating a directory named "dozen". Inside of it we'll copy the fit.jar file
and create directories labeled classes, docs, src, and tests. All source files are compiled
into the classes directory. Within the tests directory we'll create subdirectories labeled
acceptance and unit to hold the source files . At this point we only created a single file
named CaseDiscountFitTest.html. Place it inside of /dozens/tests/acceptanceHTML. Our
dozen directory should look like this.

Your classpath needs to include two things. First it must point to the classes that make up
the Fit framework. In the RunMeFirst example you just pointed at the Classes
directory. You could also just use the fit.jar file and include it in the classpath. The
classpath must also include the fixtures used to process the tables. In this setup, the
classpath should just include fit.jar and the classes directory.

The input file is CaseDiscountFitTest.html. We'll start by running the acceptance tests
from the command line just inside the dozen directory. This means that the path to the
input file is tests/acceptance/testsource/CaseDiscountFitTest.html. We'll write the output
to a file of the same name in the testresults directory. This means that the path to the
output file is tests/acceptance/testresults/CaseDiscountFitTest.html.

Now we can run the acceptance tests. Open a terminal window and navigate inside of the
dozen directory. Run the acceptance tests with this command.

java -classpath fit.jar:classes fit.FileRunner
 tests/acceptance/testsource/CaseDiscountFitTest.html
 tests/acceptance/testresults/CaseDiscountFitTest.html

We get the following feedback in the terminal window.

0 right, 0 wrong, 0 ignored, 1 exceptions

This doesn't surprise us. The table specifies that the fixtures needed to run the tests can be
found in the class register.CaseDiscountFixture. So far, this class does not
exist. In fact, if we look at the generated HTML file in the testresults directory, we can
see that it provides us with this information.

The top row of the table is presented with a yellow background color to indicate to
developers that something hasn't yet been implemented. In this case a
ClassNotFoundException is reported because the framework can't find the class
register.CaseDiscountFixture. Our next step is to take care of this exception.

Creating a Stub Fixture

As a first step, inside of the /tests/acceptance/fixtures directory create a subdirectory
named register. Inside of this register directory, create a file CaseDiscountFixture.java.
The class CaseDiscountFixture needs to extend the class fit.ColumnFixture
in order to properly process our table. Our first version of CaseDiscountFixture.java
looks like this.

package register;

import fit.ColumnFixture;

public class CaseDiscountFixture extends ColumnFixture {
}

Compile CaseDiscountFixture.java so that the .class file is written to the classes
directory. Now we can rerun the fit framework as before. This time the results are a bit
different. You can view the generated HTML page for more details on the test results, but
you should see this in the terminal window.

0 right, 0 wrong, 24 ignored, 3 exceptions

It may seem that things are getting worse – but we are actually making progress. Before
creating the CaseDiscountFixture class we had no ignored tests and now there are
twenty-four. This actually indicates that now the tests are being found. Earlier there was
one exception and now there are three. The initial version of CaseDiscountFixture
also addressed the ClassNotFoundException. Now we have one
NoSuchFieldException for both unitPrice and another for
numberPurchased and a NoSuchMethodException for itemTotal().

As a next step, let's add variables for unitPrice and numberPurchased. The
variables need to be public as they are being called from outside of the register package.
They need to be compatible with ints because we're passing in integral values. Add the
highlighted lines to CaseDiscountFixture.java.

package register;

import fit.ColumnFixture;

public class CaseDiscountFixture extends ColumnFixture{
 public int unitPrice;
 public int numberPurchased;
}

Now, compile the code as before and rerun the fit framework. This time the results
reported in the terminal window are predictably better.

0 right, 0 wrong, 8 ignored, 1 exceptions

As before, the generated HTML page contains more details if you need them. The
itemTotal() cell is colored yellow and contains the stack trace for the
NoSuchMethodException.

What remains is to address this NoSuchMethodException. You could make a good
argument in favor of doing this now or leaving it for later. On the side of leaving it as is,
the developers and the client can clearly see by this report that itemTotal() has not
been implemented yet. No one needs to be worried about tests that pass or fail, because
we haven't gotten around to this task yet. On the other hand, we could create a trivial
version of itemTotal() and most or all of the tests would fail. Failing tests also
indicate to us an area that needs to be addressed.

Stubbing out itemTotal() shouldn't take us very long. In one sense, it's as simple as
creating a public method named itemTotal() that takes no parameters and returns an
int. We do want to be careful to make sure that we aren't putting in the logic to make
these tests pass. The CaseDiscountFixture class is part of the testing framework. It
should defer the programming logic to classes that will become part of the production
code. As Bob Martin notes on the Fit framework Wiki, acceptance tests are not the same
as Unit tests. Our task in the fixture isn't to get one after another of the acceptance tests
running. For now we'll return the number –1 from itemTotal(). Here's the new
version of CaseDiscountFixture.java.

package register;

import fit.ColumnFixture;

public class CaseDiscountFixture extends ColumnFixture{
 public int unitPrice;
 public int numberPurchased;

 public int itemTotal(){
 return -1;
 }
}

Again, compile the revised version of CaseDiscountFixture.java and run the acceptance
tests. This time this message in the terminal window lets us know that all of the tests are
run, there are no exceptions, and that all of the tests have failed.

0 right, 8 wrong, 0 ignored, 0 exceptions

The generated HTML file highlights all of the entries in the third column in red. You can
see that each of the cells in that column is split into two pieces: one for the expected
result that was entered in the table and the other for the actual result that was returned
from the method.

 Writing the Production Code

All of the production code that you write should be written test first. This means that
you'll need to write unit tests in addition to the acceptance tests. Unit tests specify the
interface of the code being tested in a way that isn't possible or desirable with acceptance

tests. You don't want to allow your customers to make technical decisions about how the
code should be written. These decisions often come out of a suite of unit tests. Your
customer is making business decisions about what your software should do. You should
consult the Unit testing tutorial for more details on that process.

In this case, the acceptance tests suggest something about the structure of the code. The
tests themselves lead us to unit tests that we might write. Also, the acceptance test
fixtures need to call into the production code somewhere. You'll find it best if the test
fixture is in the same package as the code it's calling into. This means that you will
minimize the number of changes to the access level of methods being called.

Let's create the class ItemTest inside of the register package. We'll create a new
object of type Item that has a unitPrice of 800 pennies just as in our acceptance
tests. We'll add one item to our purchases and verify that the total price for this item is
800. Here's the code for ItemTest.java.

package register;

import junit.framework.TestCase;

public class ItemTest extends TestCase{

 public void testCostOfSingleItemIsUnitPrice(){
 Item item = new Item(800);
 item.addToOrder(1);
 assertEquals(800,item.totalItemCost());
 }
}

We go through the usual steps of writing enough code until this class compiles. This
requires that we create an Item class that has a constructor that takes an int
representing the unit price as a parameter. It also requires that we create an
addToOrder() method that takes an int representing the number purchased as a
parameter. Finally, this unit test implies that there must be a method called
totalItemCost() that no parameters and returns an int representing the total cost
of purchasing the proscribed number of copies of this particular item. After a little
refactoring, the code for Item.java looks like this.

package register;

class Item {

 private int unitPrice;
 private int numberPurchased;

 Item(int unitPrice) {
 this.unitPrice = unitPrice;
 }

 void addToOrder(int numberOfAdditionalItems){
 numberPurchased += numberOfAdditionalItems;
 }

 int totalItemCost() {
 return numberPurchased * unitPrice;
 }
}

Tying the Fixture to the Production Code

Now that we are passing one unit test, our Item class has taken shape enough that we
can tie our acceptance test fixture to it. We could have waited until this point to fill out
the itemTotal() method in CaseDiscountFixture instead of having returned a
–1 to avoid the NoSuchMethodException. Now we know how to fix
itemTotal(), we initialize a new Item, add to the number of items purchased, and
then return the total price for that item as calculated by the instance of Item.

It is important to note that the ColumnFixture class is very thin. It's job is to call into
the main codebase. This should feel like writing a good GUI for a program. Very little of
the business logic should sit in the GUI. A second note is that if you find yourself
needing to place some amount of logic in the fixture, then you need to write this code test
first as well.

We've now tied the acceptance test through its fixture to the production code. The altered
code is highlighted below.

package register;

import fit.ColumnFixture;

public class CaseDiscountFixture extends ColumnFixture{
 public int unitPrice;
 public int numberPurchased;

 public int itemTotal(){
 Item item = new Item(unitPrice);
 item.addToOrder(numberPurchased);
 return item.totalItemCost();
 }
}

Now when you rerun the acceptance tests, you'll see that two of the acceptance tests are
now passing. Here's the message in the terminal window.
2 right, 6 wrong, 0 ignored, 0 exceptions

And here are the results that you can see in the generated HTML file. Now the tests that
passed have a green background while the tests that failed have a red background and list
the expected and actual values.

Passing more acceptance tests

We can see from the acceptance test results that we are only passing those tests when we
purchase fewer than a dozen items. We need to create a more complex pricing scheme
than just returning the product of the unit price and the number of items purchased. Of
course, before we add any production code we have to write another unit test. Let's just
see what will happen if we buy a dozen of an item. We'll add that test to ItemTest.java
and refactor the test code a little by adding a setUp() method. Here's ItemTest.java.

package register;

import junit.framework.TestCase;

public class ItemTest extends TestCase{
 private Item item;

 protected void setUp(){
 item = new Item(800);
 }
 public void testCostOfSingleItemIsUnitPrice(){
 item.addToOrder(1);
 assertEquals(800,item.totalItemCost());
 }

 public void testCostOfADozenIsDiscounted(){
 item.addToOrder(12);
 assertEquals(9120,item.totalItemCost());
 }
}

Everything compiles and runs, but the second test fails. The discounted cost should be
9120 but the calculated cost is still 9600. We return to Item and add the logic to factor
in the discount. We quickly get the test to pass and then refactor the code so that it looks
like this.

package register;

class Item {

 private int unitPrice;
 private int numberPurchased;
 private double percentDiscount = .05;

 Item(int unitPrice) {
 this.unitPrice = unitPrice;
 }

 void addToOrder(int numberOfAdditionalItems){
 numberPurchased += numberOfAdditionalItems;

 }

 int totalItemCost() {
 return totalCostWithoutDiscount()
 - discountForDozensPurchased();
 }

 private int numberPurchasedByTheDozen() {
 return 12 * ((int) (numberPurchased/12));
 }

 private int totalCostWithoutDiscount(){
 return unitPrice * numberPurchased;
 }

 private int discountForDozensPurchased(){
 return ((int) (unitPrice
 * numberPurchasedByTheDozen()
 * percentDiscount));
 }
}

Notice that Item has no public methods or variables. In fact, Item itself isn't public and
doesn't have a public constructor. We can later expose this class and its methods if the
need arises. The classes used by JUnit and Fit have to be public. The fit variables and
methods that are referenced by the HTML tables also must be public. By placing the class
that extends the ColumnFixture class in the same package as Item we aren't
required to expose very much of the class being tested. At this point our directory
structure looks like this.

With test driven development we run unit tests all the time. We write a little code,
compile, and then run the unit tests continuously. How often should we run the
acceptance tests? The advantage of having automated acceptance tests is that we can run
them frequently. We have a suspicion that by passing the last unit test, we've probably
passed all but the last acceptance test. When we run the acceptance tests to check where
we are we get the following surprising result.

8 right, 0 wrong, 0 ignored, 0 exceptions

In the discountForDozensPurchased() method we inadvertently rounded the
amount of the discount down to the nearest penny when casting the calculated value back
to an int. This had the effect of rounding the total item cost up to the nearest penny as
Brian had specified. By running the acceptance tests we saved ourselves some time and
work creating functionality that already existed.

The Client and the Acceptance Tests

We have completed our work on Brian's first user story and can demonstrate our success.
We can now go back to Brian and show him his acceptance tests running. He accepts that
somehow we've taken care of all of his goals in this particular user story. If he'd like, he
can add another test or two if he feels there's some area of this story that he left
unexplored. For now, he accepts that we've done what we promised, but he doesn't seem
satisfied.

"What's wrong?" you ask.

"I don't know," Brian answers, "it just feels like magic."

"What do you mean?"

"Well," says Brian, "I came up with some tests and you said you'd make them all pass.
Now you show me a third column colored green and tell me that you've made them all
pass. How do I know you didn't just color the third column green?"

"Well, I could change the code back to when everything was breaking, " you suggest.

Brian isn't satisfied with this answer. "No," he says, "that wouldn't help. I want a test that
convinces me the system really is calculating the values correctly."

It's hard not to take Brian's objection personally. It sounds as if he's saying that he doesn't
trust you. He's not saying that – he's saying that passing acceptance tests aren't
convincing him right now. He needs reassurance that this process really is testing what
you say it's testing. Brian is an expert in his domain. You've asked him to sign off on a
user story when his acceptance tests are passing and it is the automation that is giving
him pause.

Let's look back at how we got to this point. You asked Brian to come up with test cases
that would show that you were correctly calculating the cost of one or more of a
particular item. He came up with a representative set of test cases and then you told him
that you would run them for him. This should remind you a bit of a strategy we employed
when unit testing. Often we need to see a test fail before we make it pass – just to have
confidence that the test is exercising the code it is intended to test. Brian never got to see
failing tests. We'll show Brian a failing test and then we'll set up a system that will help
him see tests during the process.

You tell Brian, "I have an idea."

"What?" he asks.

"What if you change the HTML file so that the third column isn't the value you expect.
Then the tests should fail in those rows."

"That's great," says Brian. "I can change the HTML myself and then we'll run the tests.
Let's change the first three. Coffee still costs 800 pennies for one pound. When I buy one
pound let's change the third column to say that the total cost should be 100; when I buy
five pounds let's change the third column to 500; and lets leave the total amount alone in
the third row but change the amount purchased to three dozen pounds. Now let's rerun the
tests."

You open up a terminal window and rerun the tests. As expected you get this result.

5 right, 3 wrong, 0 ignored, 0 exceptions

"Whoa," says Brian, "that's really nice."

"What do you mean?" you ask.

"That summary. I've never seen it before."

"I've shown you the web page where you can look for green and red to see which tests
pass."

Brian says, "That's great, but I'd also like to see the summary. Eventually we're going to
have a lot of tests. If everything is passing, I'd rather not have to look through all of the
tables."

"O.k.," you answer, "it's actually pretty easy to do. We just need to add a table to the end
of the page with a single cell that contains fit.Summary. When the page is processed
this will be replaced with the summary data for this page."

Brian adds the highlighted lines below to the end of CaseDiscountFitTest.html.

 </table>
 <h1> Summary of tests run on this page </h1>
 <table BORDER>
 <tr>
 <td> fit.Summary </td>
 </tr>
 </table>
 </body>
<html>

We rerun the tests and view the resulting web page. Brian is beaming. The three incorrect
values are highlighted in red as he wanted. He can see the difference between the actual
and expected values for the first three rows. The third row also correctly lists the amount
expected for three dozen pounds even thought that's not a value he had originally tested.
At the bottom of the page is the summary that he asked for.

"Really," says Brian, "I'd like the summary at the top of the page."

You start to explain to him that this won't work and then stop. Let him try it. You know
that he'll be more convinced that the framework is doing something by exploring a bit.
He moves the fit.Summary table to the top of the page and gets the results that there
were 0 right, 0 wrong, 0 ignored, and 0 exceptions.

"Hang on," says Brian, "it doesn't look like anything ran." He thinks for a moment and
then gets it. "I can't have the summary before the tests are run because at that point
nothing has run. There are no results to report."

Brian then puts the HTML file back in order. He corrects the table entries so that the
values are correct and he puts the fit.Summary table back on the bottom. He reruns
the tests and sees that all of the tests have passed. With this summary he can tell how
recently the tests were run and what the current status of this story is.

Brian asks that you run the tests once a day and post the HTML files to a web site that
he's set up. We agree that any time new code is integrated, we'll run the acceptance tests
and that once a day we'll post the results to his web site. We also make a note to either
use a variant of the CGI script on the Fit wiki site or a JSP page or servlet to allow Brian
to process the tests remotely whenever he likes.

Testing GUIs

"Now," says Brian, "let's work on the actual register. For the most part the cashiers will
be scanning the items in and the register will be keeping a running record. If a cashier
scans in an item that the register doesn't recognize then the cashier needs to be able to
enter in the unit price and the number of items purchased."

"Actually," you respond, "that sounds like two stories. Story one has to do with having
some list that matches bar codes, item numbers, and unit prices so that the register can
scan a bar code and know the item and its price. Story two has something to do with
items not on the list being able to be manually entered."

"Maybe," says Brian, "but I would think there's more stories than that. I'd like to keep the
list that matches bar codes to items separate from the list that matches items to prices. I
may be updating the price list pretty regularly. Then I want to give the cashier some
indication if either the item can't be scanned or it can be scanned but there's no price on
file for it. Finally, I want to allow the cashier to manually enter prices for any item."

"That seems like a lot," you say.

"It is," agrees Brian, "lets start with the last one. If everything else fails, I can still provide
each cashier with a price list on paper and let them enter the amounts by hand." He writes
down this User story.

MISCELLANEOUS ITEM
A USER CAN ENTER AN ITEM BY HAND BY PRESSING THE 'MISC' BUTTON
AND THEN ENTERING THE UNIT PRICE AND NUMBER OF ITEMS PURCHASED.

Designing the acceptance tests
With this starting place you are ready to have Brian flesh out the acceptance tests. Then
you can write the fixtures and the code that will make them pass. Remembering your
earlier experience, you are careful to involve Brian in this process.

"Describe the process to me," you prompt.

"Well, they will hit the 'Misc' button and they will see a prompt that says 'Enter Unit
Price'. They will then enter the unit price. The display will reflect this Unit Price. Next,
they'll press the 'Enter' button. They'll then see a prompt that says 'Enter number of items'.
They will then enter this number. The display will reflect this number. Then they'll press
the 'Done' button."

"Then what?"

"Then, they'll see the total cost for that item. Then they can enter another item or finish
the transaction by pressing the 'End' button."

You show him a table that you think captures what he just said.

press miscButton
check display Enter Unit Price
enter unitPrice 800
check display 800
press enterButton
check display Enter number of items
enter numberOfItems 5
check display 5
press doneButton
check display 4000
check totalCost 4000
press endButton

Brian thinks that the table looks pretty good. He suggests two changes. First, he would
like a running total to be available in a separate display and second, he wants to make
sure you can handle more than one item in a transaction and more than one transaction.
You and Brian reread the user story.

MISCELLANEOUS ITEM
A USER CAN ENTER AN ITEM BY HAND BY PRESSING THE 'MISC' BUTTON
AND THEN ENTERING THE UNIT PRICE AND NUMBER OF ITEMS PURCHASED.

You and Brian agree that this story is about entering a single item and defer the additions
that have to do with handling more than one item in a transaction and keeping track of a
running total.

Stubbing out a Fixture for the tests

You can see that this table is different than the one we worked with earlier. In that one
each column corresponded to variables that would be input into the system being tested
and methods that included the value that we expected to be returned from the method. In
this one the first column consists of one of four keywords: start, press, enter, or check.

The start keyword is accompanied, in the second column, by the name of a class that is
instantiated. The rest of the commands will be handled by this instance of the class. The
press keyword is meant to simulate a button press. The second column contains the name
of the method called by the press. The enter keyword is meant to simulate entering values

into a GUI via a text field. The second column contains the name of the method
corresponding to the text field and the third column contains the value being entered.
Finally, the check keyword indicates that this row is being tested against a value returned
by the fixture. The second column contains the name of the method that will return the
value and the third column contains the value being compared.

Our first step is to make a few adjustments to the table. With Brian's help, we add the two
lines at the top of the table to specify the class used to process the table and the class that
is instantiated to run the methods listed in the table. Brian also decides to tweak the
process a little bit. The revised table looks like this.

fit.ActionFixture
start register.MiscItemFixture
press miscButton
check display Enter Unit Price
enter unitPrice 800
check display 800
press enterButton
check display Misc Grocery 800
press timesButton
check display Enter number of items
enter numberOfItems 5
check display 5
press doneButton
check display 4000
check totalCost 4000

We'll create the file MiscItemFixture.java in the /tests/acceptance/fixtures/register/
directory. It must extend the Fixture class in the fit package. We can quickly stub it
out with the methods that it needs to contain. You can read those off of the table one at a
time.

package register;

import fit.Fixture;

public class MiscItemFixture extends Fixture {

 public void miscButton(){}

 public void enterButton(){}

 public void doneButton(){}

 public void timesButton(){}

 public int totalCost(){
 -1;
 }

 public String display(){
 return "";
 }

 public void unitPrice(int unitPrice){}

 public void numberOfItems(int numberOfItems){}
}

Compile this class and run the acceptance tests in the file MiscItemFitTest.html. The
report is that none of the tests are right, seven of them are wrong, and that no exceptions
were thrown. In an ActionFixture the tests correspond to the rows that begin with
the keyword check. Our next step is to write the code that gets these tests to pass.

Problems passing the Acceptance Tests
We'll pass the acceptance tests in a way that has problems not caught by these tests. Don't
skip to the next section where a more correct solution is presented. It's important to see
the problems that can arise when you take care of programming logic in your acceptance
test fixtures.

Let's first look at the production code class ManualEntry. It was written test first to
take care of many of the tasks specified in the acceptance tests. Only the highlighted
areas are used for real input or calculation. Everything else is used to set the display or
access variables.

package register;

class ManualEntry {
 private String display;
 private Item currentItem;

 ManualEntry(){
 setDisplay("Enter Unit Price");
 }

 void setDisplay(String display){
 this.display = display;
 }

 String getDisplay(){
 return display;
 }

 void createItemWithPrice(int price){
 currentItem = new Item(price);
 setDisplay("Misc Grocery " + price);
 }

 void buyMoreThanOne(){
 setDisplay("Enter number of items");
 }

 void setNumberOfItems(int numberPurchased){
 currentItem.addToOrder(numberPurchased);
 setDisplay(""+ getTotalCost());
 }

 int getTotalCost(){
 return currentItem.totalItemCost();
 }
}

Here's the test fixture that calls into ManualEntry. Notice that it does a little more than
it should. Here's the code for MiscItemFixture.java.

package register;

import fit.Fixture;

public class MiscItemFixture extends Fixture{

 private ManualEntry manualEntry;
 private int unitPrice;
 private int numberOfItems;

 public void miscButton(){
 manualEntry = new ManualEntry();
 }

 public void enterButton(){
 manualEntry.createItemWithPrice(unitPrice);
 }

 public void doneButton(){
 manualEntry.setNumberOfItems(numberOfItems);

 }

 public int totalCost(){
 return manualEntry.getTotalCost();
 }

 public String display(){
 return manualEntry.getDisplay();
 }

 public void unitPrice(int unitPrice){
 this.unitPrice = unitPrice;
 manualEntry.setDisplay(""+unitPrice);
 }

 public void numberOfItems(int numberOfItems){
 this.numberOfItems = numberOfItems;
 manualEntry.setDisplay(""+numberOfItems);
 }

 public void timesButton(){
 manualEntry.buyMoreThanOne();
 }

}

All of the tests pass. The unit tests pass and the acceptance tests pass. For the most part,
the acceptance tests call into the class being tested. There are two main exceptions.
Consider the code for the methods unitPrice() and numberOfItems(). They
both do two things that should raise a red flag: they set the value of an instance variable
and they explicitly set the value of a variable instead of calling methods in the
ManualEntry class. The acceptance test has separated the steps of typing in the unit
price and pressing the enter button. These steps should be handled in our production code
and not in our test fixture.

This example along with its mistakes may seem a little artificial. Of course, you reason,
the functionality of those methods has to be in ManualEntry and not in the fixture. On
the other hand, it is easy to make this mistake. You need to be vigilant and keep any logic
that belongs in your production code out of your test code.

The revised fixture and production code

Before reading the code presented in this section, try to refactor MiscItemFixture.java to
eliminate the instance variables unitPrice and numberOfItems. One technique is

to comment out unitPrice and see what else needs to change. You'll see that you have
to change the way you implement the methods enterButton() and unitPrice().
Similarly, when you comment out numberOfItems you'll find that you need to change
the way you implement the methods doneButton() and numberOfItems(). Here's
one possible refactoring of MiscItemFixture.java.

package register;

import fit.Fixture;

public class MiscItemFixture extends Fixture {

 private ManualEntry manualEntry;

 public void miscButton(){
 manualEntry = new ManualEntry();
 }

 public void enterButton(){
 manualEntry.createItemWithPrice();
 }

 public void doneButton(){
 manualEntry.setNumberOfItems();
 }

 public int totalCost(){
 return manualEntry.getTotalCost();
 }

 public String display(){
 return manualEntry.getDisplay();
 }

 public void unitPrice(int unitPrice){
 manualEntry.enterUnitPrice(unitPrice);
 }

 public void numberOfItems(int numberOfItems){
 manualEntry.enterNumberOfItems(numberOfItems);
 }

 public void timesButton(){
 manualEntry.buyMoreThanOne();
 }
}

Now the acceptance test fixture is thin. It just delegates all calls into the class being
tested. The downside is that these two classes are highly coupled. This means that
changes to ManualEntry may require changes to MiscItemFixture. In this case,
we've made changes in MiscItemFixture that require changes to ManualEntry.
You should have made the changes by writing unit tests for ManualEntry. The tests
will check some of the behavior specified by the acceptance tests.

Here's one possible version of ManualEntry.java. Most of the changes have been
highlighted.

package register;

class ManualEntry {
 private String display;
 private Item currentItem;
 private int numberOfItems;
 private int unitPrice;

 ManualEntry(){
 setDisplay("Enter Unit Price");
 }

 void setDisplay(String display){
 this.display = display;
 }

 String getDisplay(){
 return display;
 }

 void createItemWithPrice(){
 currentItem = new Item(unitPrice);
 setDisplay("Misc Grocery " + unitPrice);
 }

 void buyMoreThanOne(){
 setDisplay("Enter number of items");
 }

 void setNumberOfItems(){
 currentItem.addToOrder(numberOfItems);
 setDisplay(""+ getTotalCost());
 }

 int getTotalCost(){
 return currentItem.totalItemCost();
 }

 void enterNumberOfItems(int numberOfItems){
 this.numberOfItems = numberOfItems;
 setDisplay(""+ numberOfItems);
 }

 int getNumberEntered(){
 return numberOfItems;
 }

 void enterUnitPrice(int unitPrice){
 this.unitPrice = unitPrice;
 setDisplay(""+ unitPrice);
 }

 int getUnitPrice(){
 return unitPrice;
 }
}

Now the changes to what is displayed are in the production code and not in the test
fixture.

Running all of the tests

As your suite of acceptance tests grows you will want a way of running them all, all of
the time. One method is to put them all in a single HTML file. Although allowable, this is
an unwieldy solution. You and your customers will need to scroll down through
extremely long files looking for particular results. Another solution is to create a test that
calls all of the other tests and reports back the results. If you need more details, you can
look at the particular tests that returned incorrect results.

The AllFiles Fixture

Several fixtures have been created for running more than one test file. We'll use the
AllFiles fixture that is included in the eg package. Note that this means that
AllFiles is not included in the fit.jar file. In order to use AllFiles you need to
add it to your classpath. You can create a jar file eg.jar that contains the eg package or
you can just add the Classes directory in the Fit distribution to your classpath. Because
AllFiles is not currently part of the framework, you'll need to check that it is still in
the distribution.

Create an HTML file named AllTests.html and place it in the tests/acceptance/testsource
directory. This time you'll include a row with the path to any HTML file containing

acceptance tests that you want to run as part of this suite. You are allowed to use wild
cards to include all of the files in a certain location or with a certain naming pattern. For
example, we can run both the CaseDiscountFitTest.html and the MiscItemFitTest.html by
specifying that we are running *FitTest.html. Here's the AllTests.html file.

<html>
 <head>
 <title> Acceptance Tests for all User stories</title>
 </head>
 <body>
 <h2> Acceptance Tests for all User stories: </h2>
 <table BORDER>
 <tr>
 <td colspan = 2>
 eg.AllFiles
 </td>
 </tr>
 <tr>
 <td colspan = 2>
 tests/acceptance/testsource/*FitTest.html
 </td>
 </tr>
 </table>
 <h2> Summary of tests run on this page </h2>
 <table BORDER>
 <tr>
 <td> fit.Summary </td>
 </tr>
 </table>
 </body>
<html>

Notice that we've also included a call to fit.Summary in a second table. This provides
a more informative summary of the tests run by the call to AllFiles.

Results of running the AllFiles fixture

You need to know what you do and don't get from running this fixture. You do get a
comprehensive report like this.

The top table lists the results for each of the files matched by the expressions you input.
One advantage of running this test suite is that while you have your heads down and are
focused on the tests in MiscItemFitTest.html you can make sure you aren't breaking
anything anywhere else.

The bottom table lists the total files run in the counts variable and the summary results for
tests in the counts run variable. The number of tests run should continue to climb. It's a
matter of taste, but the number ignored and that appear in the exceptions should never be
non-zero for very long. The ratio of right to wrong should increase. You can't insist that
acceptance tests run at 100% all of the time. With unit tests, everything stops until you fix
a broken test. But you also don't write code until you write a test that breaks. Acceptance
tests communicate customer requirements. It is not unexpected that when a customer
contributes a new set of requirements that many of them won't be working.

Running this fixture does not generate new HTML files for each of the files whose tests
are run. You can see the summary results here. If you then decide to look at the latest
information in the tests/acceptance/testresults/MiscItemFitTest.html you'll notice that this
is the same version as before. If you want details for failing tests, you need to process that
individual page. The comprehensive tests point you in the direction of files that need to
be looked at further.

Next steps

Now create your own tests and add them to the AllTests.html file. In this tutorial we've
explored examples of column fixtures and action fixtures. You can now create a row
fixture and see how it is different from the other two. Work with your customer to help
create tables that capture their requirements. Automate the testing process in a way that
you can provide feedback to your customer, your instructor, and to the other developers
on your team.

Finally, it may feel as if you have devoted a lot more effort to testing than to writing the
application code. It is true that between unit tests and acceptance tests you may actually
end up with more lines of code used in testing than in your application. Your application
will tend to be more directed, lean, and modular. The test code will benefit the
application you are building. In addition, you should know that in an actual commercial
development environment your application would still require more testing often created
by an independent team.

